GC-MS-Analysis

  1. 调用数据;

  2. Mass Spectrometry and 谱图检索报告 (选择屏幕);

  3. Alt+S+S用于背景删除

  4. 生成百分比报告.

  5. 修改runlib(用记事本打开)相关的检索名与峰面积;

  6. 再次生成百分比报告, 并返回记事本, 填写保留时间后面的百分比.

进样选择方法: 25-1适用于浓度低的样品进样; 100-1适用于浓度高的进样; 还有6-1.

同分异构体虽然质谱图一样,但是保留时间必然有区别。

销售分析调香OEB销售闭合回路

销售=>分析=>调香=>OEB=>销售 闭合回路

GCMS 原料分析

要单独用表格记录原料分析, 将待测原料用酒精进行稀释5%,然后使用602280方法(浓度较高),取0.5ml进行进样,注意用PC编号和中文名字进行命名进样。

FA13008 The First Experiment

The first experiment of SDE was done and analysed by Tongjia. You can download the source code by clicking this link The First Experiment

FA13008 TIC

You can download the source code by clicking this link FA13008 TIC

FA13008 Pentane vs t-butyl methyl mester

You can download the source code by clicking this link FA13008 Pentane vs t-butyl methyl mester

FA13008 t-butyl methyl mester

You can download the source code by clicking this link FA13008 t-butyl methyl mester

FA13008 Pure vs SDE

You can download the source code by clicking this link FA13008 Pure vs SDE

The impact of vapor pressure and mole fraction on the recovery of different components using SDE

You can download the source code by clicking this link The impact of vapor pressure and mole fraction

TheimpactofvaporpressureandmolefractionandlogP

由正戊烷萃取出来的FA13008样品,头香保留比较好;而由二氯甲烷萃取出来的FA13008整体性保留比较好,尤其是中段及后段的香味。

The Four important factors on SDE Efficiency

You can download the source code from here source code.

FA13008 CH2Cl2

You can download the source code from here source code.

FA13008_Comparison_of_Solvent.html

FA13008_Comparison_of_Solvent

GC-LC Concordance Software

GC-LC concordance software dramatically enhances the possibilities of chromatography on complex products and chromatographic fingerpringts by solving retention time shifting in complex chromatograms comparison.

Optimization of Working Parameters

The best compromise between the above-mentioned parameters(Solvent, Salting-out, Distillation-Extraction Time, Oxygen Effect) can be determined empirically.

Method 1: Optimization acheived by varying four variables: 1. temperature of the sample; 2. temperature of the solvent baths; 3. the coolant temperature; 4. the isolation time

Method 2: A face centred cube experimental design

Conclusions:

  • Recoveries differ, depending on the volatilities and solubilities of the analytes in the solvent.

  • Too high a solvent temperature leads to decreasing extraction efficiencies.

  • The isolation time decreases as the sample temperature increases.

Method 3: Another alternative to optimize SDE working conditions lies in the use of a mathematical model.

SDE工作条件影响汇总

  • 溶剂的影响:

    许多比水的密度高或者低的溶剂用于SDE实验, 并做了相应的比较: 二氯甲烷, 正戊烷, 异戊烷, 正己烷, 氯仿,
    乙酸乙酯, 乙醚, 叔丁基甲醚, 三氯氟甲烷, 1,1,2-三氯三氟乙烷以及溶剂混合物比如正戊烷/乙醚.
    通常得出来的结论是, 二氯甲烷一般来说是萃取的最好溶剂. 对于特定的化合物来说, 其他的溶剂可能表现出更高的效率,
    但是实用性最广的仍然是二氯甲烷, 如图5展示出来的半挥发性化合物.
    

Comparison of solvent efficiency. Average recoveries are 47%, 59%, 53%, 58% and 36%

  • 盐析效应:

    为降低挥发组分在水中的溶解度, 向样品烧瓶中加入盐溶液被提出来了. 这看起来只是特别适合提取极性物质的回收率,
    例如香豆素或者2-苯乙醇; 但是, 香兰素和乙基香兰素提取量仍然可以忽略.
    
  • 蒸馏-萃取时间:

    最优化的蒸馏-萃取时间从实验上已经被求证过: 达到48h的蒸馏萃取时间已经被验证可以从肥皂中提取挥发度比较
    低的化合物(比如: 肉桂醇, 2-苯乙醇). 值得注意的是, 含有油脂类的基质会急剧增加获取可接受的回收率的时间
    

Lipid Matrix